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It is pointed out that recent work on the high-frequency behavior of the 
neutron scattering function S(k, o~) in liquids indicates that at fixed ~o 
there is a dip at a value of k very close to the maximum of S(k) (first 
diffraction peak). This dip is due to the configurational average over pairs 
of particles and scales as the inverse particle radius. 

KEY W O R D S :  de Gennes narrowing; neutron scattering in liquids; time 
correlation functions; hard core limit; neutron scattering at high frequencies. 

The shape o f  the coherent  inelast ic  neu t ron  scat ter ing funct ion  S(k,  o J) in 
s imple l iquids  has been the object  o f  cons iderab le  study.  I t  was suggested in 
1959 by  de Gennes ,  (1) on the basis  o f  sum rule arguments ,  tha t  a line na r row-  
ing should  occur  at  cer ta in  k values,  in pa r t i cu la r  near  the first d i f f ract ion 
m a x i m u m  (at a b o u t  2 / k  -1 in argon).  This effect is observed in neu t ron  
experiments.!  2) N o  comple te ly  sa t is factory  mic roscop ic  der iva t ion  o f  this 
resul t  has  appeared .  Here  we cont r ibu te  to a so lu t ion  o f  this p rob l e m by 
po in t ing  out  tha t  a recent  deta i led  kinet ic  analysis  (a) o f  the h igh-frequency 
behav ior  o f  S(k,  o~) provides  a pa r t i a l  mic roscop ic  basis for  the line narrowing.  
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The value k0 at which S(k) is a maximum is determined mainly by the 
particle diameter ~, or effective hard sphere size, and seems to be essentially 
a packing effect. Generally one finds ko to be slightly larger than 2~-/~ with 
only a weak dependence on the thermodynamic stateJ 4~ It  is shown in Ref. 3 
that this radius also determines the k value at which a dip in the high- 
frequency part  of  S(k, co) appears. Since one has 

= f (doJ/2~r)S(k, ~o) (1) S(k) 

this result implies a connection between the high-frequency behavior and 
that of  the rest of  the spectrum. Furthermore,  the dip is due only to a static 
configurational average, being almost independent of  the dynamical behavior. 
This is responsible for its absence in the tail of  the self-correlation function, 
for which the line narrowing ~5~ is much less marked. 2 

The reason for a line narrowing at the first diffraction peak seems 
intuitively obvious. The pairs of  particles sampled at k0 are at or close to the 
distance of the first coordination shell. Such pairs correspond to nearest 
neighbors in the solid--the first diffraction peak is the liquid analog of  the 
first Bragg peak. Since the pairs " p r e f e r "  this separation, one expects them 
to move more slowly, implying more weight in S(k, ~) at low frequencies2 
in the solid case, the phonon energy is reduced at the corresponding k value, 
even going to zero in certain directions. 

De Gennes '~1~ argument for a line narrowing runs as follows. Define a 
normalized scattering function 

Z(k, ~o) =- S(k, oJ) / I  (doJ/2~r)S(k, ~o) = S(k, ~o)/S(k) (2) 

Then consider the ratio 

R(k) = k[; (d~/2.)o~'X(k,o~)]/[f (do42.)JZ(k,o~)] 2 (3) 

One also needs the classical counterpart  of  the f sum rule: 

f (d~olZ~)~2S(k, o,) = k21~m (4) 

Using Eqs. (3) and (4) and the sum rule ~1~ 

M~(k) =-- f (dw/2~)o~'S(k, 0)) 

= ( 3 k ' / ~ m  ~) + (~/~m ~) 

x p fdr  g(r)(1 - cos k.r)(~.V)2 V(r) (5) 

2 Neither our argument nor that of Ref. 1 predicts a line narrowing in this case. 
3 We are indebted to Prof. S. Yip for this argument. 
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where g(r) is the pair correlation function and V(r) the interparticle potential, 
we find 

R(k) = l1 + (pfl/3k 2) 
L 

x fdrg(r ) (1  - cos k.r)([c.V)~V(r)]S(k) (6) 

Using experimental values for S(k) in liquid argon, de Gennes showed that 
at k0 the second moment of Y(k, co) has a minimum while R(k) has a maxi- 
mum, indicating a line narrowing. 

This argument can be further analyzed as follows. Define the frequencies 

wh =- (doo/2rOco*Z(k, co) , a,~ - (dco/2~-)co2Z(k, co) (7) 

Then wh is a typical " h i g h "  frequency--that  is, one at or near which E(k, w) 
contributes most to its fourth frequency moment. Likewise, Eq. (7) uses the 
second moment to define a typical " intermediate"  frequency. One can see 
that these definitions are meaningful, by multiplying the experimental values 
for S(k, co) by the appropriate power of co and noting that the resulting curve 
is (roughly) localized in frequency. Such curves for co2S(k, co) can be seen in 
Figs. 10 and 11 of Ref. 7. Now we take the fact that cob (or o~,) decreases as 
k approaches k0 to mean that Y,(k, co) is decreasing at high (or intermediate) 
frequencies. Since Z is normalized to one, this means it must be increasing 
at lower frequencies; hence there is a line narrowing at this k value. This 
reasoning assumes a simple line shape; we suppose that there does not exist, 
for instance, a strongly k-dependent shoulder in the spectrum. No such 
feature is observed in neutron measurements of S(k, co). With this interpre- 
tation R gives a measure of the relative rate at which Z decreases at high and 
intermediate frequencies. Denoting the derivative with respect to k at ko 
by a prime, we have 

R' -- co/ = cob' = 0 (8) 
and 

R" < 0, co~: > 0, co~ > 0 (9) 

(The last inequality can be shown by a numerical computation of M4 using 
experimental data or by the results given below.) Now by direct computation 

R" = 4R[(co;~/co~) - (col/co,)] (10) 

Hence R" < 0 implies 
co"/<,,, > co;,/<.oh (11) 

This indicates that as k nears ko, y, u2 will decrease more rapidly in the inter- 
mediate-frequency region than Z1~4 does at high frequencies. 
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We now show that the line narrowing can be derived by a different 
argument. Our analysis considers S(k, co) rather than Z(k, oJ). We argue 
f rom Eqs. (1) and (4) and the fact - -shown below-- tha t  at high co, S(k, oJ) 
dips as a function of k at or very near k0. Since S(k) has a maximum at ko 
and the second moment  has no extremum, it follows that S(k, oo) must be 
increasing at low frequencies as k0 is approached. Here as above we must 
assume a simple line shape. The new feature of  this argument is the explicit 
microscopic analysis of  the large-oJ behavior of  S(k, o~). Using this, the line 
narrowing is at least partially derived in terms of the dynamics of the con- 
stituent particles of  the system. The implications drawn above for the 
behavior at high and intermediate frequencies are of  course not altered by 
taking this viewpoint. 

I t  should be noted that the frequency region where the " d i p "  is calcu- 
lated is for ~o near ~% and is just that responsible for almost all of  the oscilla- 
tory (second) term in M~(k). The dynamical processes involved also cause 
M4(k) to diverge if one lets the repulsive part  of  V(r) become infinitely hard. (a) 

In what follows we give a condensed version of the derivation of the 
high-frequency behavior of  the scattering function. Further details are 
contained in Ref. 3. 

Consider the second derivative of  the intermediate scattering function 
[the Fourier transform of S(k, oJ)]: 

/7 

(82/St2)F(k, t) = - ( l / N )  ~_, (k.v~(O){exp[ik.r~(O)]} 
i , ] = l  

x k-vj(t)  e x p [ -  ik.rj(t)]5 (12) 

The events causing it to vary most rapidly at short times are collisions 
involving the repulsive forces. Since the repulsive part  of  the potential is 
almost a hard core, it is a good approximation to consider two-body collisions 
only. This is because the duration of a "c lose- in"  two-body collision, though 
finite, is very short for a realistic potential (it goes to zero in the hard core 
limit) so that there exists a frequency range for which many-body collisions 
can be neglected. For  argon this is ~o > 10 +13 sec -1. This step reduces the 
calculation to a two-body problem and defines the time interval over which 
it is valid. Furthermore, as long as k is not too large, we can replace r~(t) 
by r~(0), thereby neglecting the change in position during a collision as 
compared to the change in velocity. 

In a classical system, the initial velocity average is Maxwellian. Thus 
our approximation allows the calculation of all parts of  Eq. (12) except the 
pair correlation function g(r) at small r, which enters as an unknown. It is 
just a measure of the probability that a given "close- in"  pair configuration 
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will occur. If  we now introduce relative coordinates for the pair and keep 
only those parts of Eq. (12) that vary most rapidly, we find 

t) = -�88 f dr(k.v(O)k.v(t))(1 - exp ik.r)g(r) (13) (82/3t2)F(k, 

where v(t) is the relative velocity of two particles whose initial separation is 
r and the brackets indicate averaging over initial velocities. Note that the 
factor exp ik-r  is due to the off-diagonal terms in Eq. (12) and hence would 
be absent for the self-correlation function. Arguing further that head-on 
collisions are the most import and taking the time Fourier transform gives 

S(k, ~o) = �88 f dr{A(o), r)/oo2l[k.r)21r 2] 

x (1 - exp ik.r)g(r) (14) 

where A(oJ, r) is the Fourier transform of (v(O)v(t))r. In Ref. 3 we show that 
for smooth, repulsive potentials a good approximation for A is 

A(~o, r) = ( 2,,)lJ2( 2/Bm)[1/o~(r ) ] exp{-�89 2} (15) 
where 

oJ(r) =_ [(2/m)V"(r)] ~/2 (16) 

and V"(r) is the second derivative of the potential. This Ansatz fits the zeroth 
and second frequency moments of A(oJ, r) exactly and compares well with 
the exact solution when V(r) is an exponential plus a constant. 

Now in Eq. (14) the frequency and wave vector dependences are com- 
pletely decoupled for each value of r. From the properties of A(co, r) and 
g(r) it is easy to see that the integration in Eq. (14) is in general restricted to 
a small range of r [of the order of  the width of the repulsive part of V(r)], 
over which k . r  does not change much. Hence we can bring the k-dependent 
factors out of the integral, obtaining (after integration over angles) 

S(k, ~o) ~ (Tr/2)oC[krl(oJ)]2f2(kr~(~o)) (17) 

where rl depends only slightly on ~o and is always close to cr and C is inde- 
pendent of k. For  hard spheres rl = or, one can show that C oc ~o-4 and 
Eq. (17) gives the exact asymptotic form of S(k, oJ). For other potentials the 
oJ dependence is more complicated, involving the explicit behavior of g(r) at 
small r via Eq. (14). The functionf~(x) is defined by 

f2(x) = du u2(1 - cos xu) (18) 
1 

Figure 1 is a plot ofx2f2(x). The first dip comes at x % 6.9. Neutron measure- 
ments confirm the existence of this feature. <6~ 
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Fig. 1. The function x2f2(x) [cf. Eq. (18)]. 
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